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Statistical Issues in Carcinogenic

Risk Assessment
by Howard E. Rockette*

Considerable progress has been made on the development of a variety of analytical methods to aid in the carcinogenic
risk associated with exposure to both occupational and environmental agents. Although the development of these methods
has been accompanied by consideration of many statistical issues, there are many areas where additional effort could be
directed if these analytical methods are to provide the most appropriate interpretation of risk. These issues include methods
of combining multiple studies to obtain an overall risk estimate, the robustness of the statistical model, methods of selection
among competing models, an assessment of the effect of different measures of exposure cn the estimated dose-response
relationship, and development of surveillance methodology. These issves are discussed, and productive areas of future

research are indicated.

introduction

The term “risk assessment” is used ina variety of ways. Each of
the areas of risk ascertainment covered in this conference has
statistical issues specificto the methodology being used toascer-
tainrisk. Because of the breadth of the area, this paper is restricted
to the outcome of cancer as the potential risk from exposure and
focuses on problems related to epidemiological studies and does
not address the many issues related to incorporating animal studies
into risk assessment. Ina further attempt to make the scope of this
topic more specific, risk assessment is characterized as trying to
answer one of the following three questions: Does an excess risk
exist fromcancer inthe presence of a specified exposure? Is there
adose-response relationship of exposure and risk? Can we estimate
the effect of controlling exposure?

If the usefulness of present models of carcinogenic risk assess-
ment are to be improved, several statistical issues need to be ad-
dressed. These topics relate to the following five general areas:
a) combining data across different studies; b) model robustness;
¢) model discrimination; &) measurement of exposure; and &)
problems of screening and surveillance. This paper discusses
each of these general areas as they relate to the three general
questions posed about risk assessment.

Methods of Combining Data
across Studies

The methodology of determining whether there is a risk from
exposure to a potential carcinogen has been well developed in re-
cent years. There are numerous papers that have addressed
methodology to assess risk for both case-control studies and
cohort studies, and these methodologies incorporate adjustrnents
for potential confounders (/-5). However, in deciding whether
an exposure results in an increase in risk, one is often faced with
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synthesizing information from multiple studies, which in some
cases appear to have conflicting results. Part of the reason for the
appearance of conflicting conclusions relates to the over-
simplistic but widely used practice of interpreting statistically
significant results {(usually p < 0.05) as a positive study and
declaring results where p > 0.05 a negative study. Such a prac-
tice ignores the concept of statistical power in hypotheses testing
as well as the elevated type I error in studies where there are
multiple hypotheses.

Power is the probability of detecting a true risk when one ex-
ists and is a function of the magnitude of the true risk and the
sample size. Often studies do not have sufficient sample size to
detect a moderate risk. For example, in a negative study of 518
workers exposed to trichloroethylene (6), Rockette (7) calculated
a power of 0.81 associated with 3-fold risk of lung cancer and of
061 associated with a 2-fold risk.

Even large studies may have low power if the risk estimate is
restricted to a highly exposed subgroup with long-term exposure.
For example, Rockette and Arena report power of 0.92 of detec-
ting a 25 % increase in lung cancer of workers in the potroom or
carbon department of aluminum reduction plants (8). However,
one of the higher exposures of coal tar volatiles occurs for anode
men in the Soderberg process. The power of detecting a 100% in-
crease in lung cancer for men employed at least 20 years in this
job and process i5 (.32,

Although low power may result in failing to detect a car-
cinogenic risk for a specific study, multiple tests of hypotheses
within a study may result in falsely declaring risk, The probabili-
ty of falsely rejecting at least one of multiple hypotheses is called
the experimentwise error rate and is seldom addressed in
epidemiological studies. Rockette and Arena (9) demonstrate
that using a standard battery of 24 categories of malignancy in
two standardized computer programs (J0,1]) often used in the
analysis of mortality data from occupational cohorts led to an ex-
perimentwise error rate of 0.36, not the 005 associated with each
individual comparison,
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If we are to adequately synthesize data from multiple studies,
the two concepts of power and multiple comparisons must be ap-
propriately addressed. The practice of combining results from
multiple studies is often called meta analysis. Meta analysis is not
a new concept and has been widely used in the educational
research and social science areas (12-15) and more recently in the
health area (/6-20). However, in the medical and health science
areas, most of the applications have been to synthesize results
from well-controlled studies (usually randomized trials), and the
more difficult application to epidemiological studies has received
less attention.

Some general issues related to meta analysis in epidemio-
logical studies have been discussed in several papers (2/-24),
and more recently, methods of meta analysis been applied
to occupational data. Synthesis of data across studies to assess
cancer risks has been conducted for workers exposed to vinyl
chloride (25), lead (26), asbestos (27), benzene (28), and
aluminum workers (29). In the more general area of environ-
mental exposure, the effect of passive smoking on lung cancer
has been evaluated using a meta analysis (30). Given the rapid
proliferation of meta analyses in related medical areas, it is
likely that there will be an increasing use in occupational
and environmental risk assessment. However, the application
of meta analysis to the medical area, even when restricted
to randomized trials, has its limitations (3/-34), and in the
area of environmental epidemiology additional problems
occur.

Epidemiological studies have a greater variability of design.
Some studies are case-control studies, and there are a variety of
options for selecting the control group. The proportionate mor-
tality study is an approach used in a substantial number of oc-
cupational mortality studies. Using only deaths known to the
employer, the proportion of deaths from a specific cause within
the group of all causes is compared to the proportion within a
control group. The cohort study obtains risk estimates over a
designated observation period and may have either an internal or
external control. The estimates of risk obtained in these various
types of studies, although related, are not mathematically the
same. Furthermore, different control groups and differing infor-
mation on potential confounders may lead to substantially dif-
ferent biases in the risk estimate. Greenland (23) has described
procedures to adjust for confounding when combining data
across epidemiological studies, but the methods are approximate
and highly dependent on assumptions that cannot be confirmed
with the amount of information usually available in a published
report.

Statistical Models

The second general question posed in regard to risk assess-
ment relates to ascertaining a dose-response relationship. The
determination of a dose-response curve is ciosely related to the
other two general questions on risk we posed earlier. First, ex-
istence of a dose-response relationship provides further confir-
mation of the existence of risk because it is one of the
epidemiological criteria often specified for a cause-effect rela-
tionship (35). Secondly, if the dose-response curve is ascertained,
itprovides useful information to estimate the effect of limiting ex-
posure. Both purposes require the specification of a statistical
model.

A statistical model may be used to provide a context in which
to test hypotheses, to provide insight into biological mechanisms,
or to provide information outside the range of the data. The
robustmess of the model may depend upon the purpose for which
it is used. It is likely that if one is simply trying to ascertain
whether risk increases with dose and the exact form of the dose
response is not specified, then the model may still be robust with
respect to identifying a monotonic relationship. However, it
should be recognized that a good fit of the model to the data set
is a necessary but not sufficient condition for establishing the ap-
propriateness of an explanation of biological mechanisms, and
extrapolation outside the range of the data is often a proecedure
that may result in poor estimates if the model is incorrectly
specified.

In attempting to ascertain risk from exposures believed to be
carcinogenic, a variety of models have been proposed from
which inferences relative to magnitude of the risk, biological
mechanisms, and extrapolation to low doses may be based. The
goal of this paper is not to review in detail various cancer models.
Interested readers may consult reviews by Whittemore and Keller
(36); Armitage (37); the work of Moolgavkar and colleagues
(38-40), and a nonmathematical summary of the various com-
peting models by Chu (4/).

Armitage (37) discusses three general classes of models which
he feels are the main contenders for generally applicable
theories. The multistage model and its modifications (42-45) is
based on the assumption that a cell becomes malignant only after
going through k transitions. As the model has developed, the
transition rates between successive stages are not required to be
equal, and at least one of the stages is assumed to be linearly
related to dose. Thus, the ith dose-related transition rate is
assumed to be equat to a background transition rate plus the pro-
duct of a constant, b, and the instantaneous dose rate at time ¢,
The constant b, is called the potency parameter and represents
the increase in the transition rate per unit increase in dose. This
model is often criticized for not having a biological basis since
more than two transition stages of cancer cells has not been
demonstrated experimentally.

The two-stage model proposed by Moolgavkar and Knudson
(38} is often assumed to have more of a biological basis. It is for-
mulated biologically in terms of cell divisions, and statistically
it is formulated as a birth-death process. This model views car-
cinogenesis as the end result of a two-stage, irreversible process.
1t assumes that malignant turnors arise from a single malignant
progenitor cell and that the transformation of susceptible stem
cells to malignancy is independent of the transformation of other
stem celis. The model incorporates mutation rates that sum-
marize the likelihood that during cell division a normal cell will
result in an intermediate cell and a second mutation rate sum-
marizing the likelihood that an intermediate cell will result in a
malignant cell during division.

The third class of models considers only the time till presen-
tation of the tumor and does not include the more detailed
mathematical concepts of mutation rates and growth rates of in-
termediate cells that are part of the multistage or Moolgavkar and
Knudson model. This type of procedure was proposed in earlier
papers by Pike (46) and Peto and Lee (47) where time until oc-
currence of mmor in mice exposed to a constant dose of a
carcinogen was assumed to be a Weibull distribution. The
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occurrence of tumor was hypothesized as occurring when the
first of a large number of potentially malignant cells culminates
in a clinically detectable tumor. The distribution of time until oc-
currence of tumor can be viewed as the distribution of the
minimum time to event of a large number of independent, iden-
tically distributed random variables representing the times un-
til occurrence of tumor from an individual cell. The Weibull
distribution was selected because it is one of the limiting extreme
value distributions for the minimum-order statistic. This ap-
proach of modeling time until occurrence of tumor was recent-
ly applied (48) to incidence data for breast, ovary, and en-
dometrium cancers and resulted in a reasonably good fit of the
data.

One advantage of having the correctly specified model is that
it enables one to draw inferences outside of the range of the data
as well as make useful decisions of the benefit of change in ex-
posure. For the multistage model, Day and Brown (4¢) sum-
marize the impact of the specific stage affected by the carcinogen
on the observed benefit when the exposure is eliminated. If dose
affects the transition rate for an early stage, it takes longer to
observe the effect of reduced exposure to the carcinogen than if
a later stage is affected.

There is work that could be done in adapting these models to
more complicated situations. For example, recent work has
focused on generalizing these models from the requirement of a
single measure of dose to models where the dose may vary over
time (40,50). Another possible extension would be incorporating
benign tumors as a third stage of disease. Formal introductions
of the concepts of competing risk and random effects would also
be useful generalizations. However, our focus is not to indicate
what specific modifications might be made to existing statistical
models but to address some statistical issues of a more general
nature that should be explored if such models are to be more
usefully emploved.

Model Robustness

More work needs to be done to determine the robustness of a
given model relative to the inferences being made. Three specific
questions of importance are as follows: How robust is the
estimate of the potency parameter? How robust is the model
when extrapolating to low dose? How robust is the method of
assessing the effect of controlling exposure?

In the two-stage, dose-related, multistage model, it has been
demonstrated that the confidence interval estirnates of the poten-
cy parameter based on Wald’s statistic are not well behaved for
extreme parameter values but that the standard methods of plac-
ing confidence intervals have good coverage and power proper-
ties for a single-stage, dose-related, multistage model (51). There
has been considerable work as well as debate on extrapolation of
high-dose results to estimate a low-dose effect (52). Even within
a single family of models, there can be considerable difference
in estimates depending on the values of the parameter. Although
the standard statistical approach to suminarize such variability
is a confidence interval estimate, Crump and Howe (53) note that
the absence of regularity conditions sufficient for applying stan-
dard methods and the inappropriateness often-applied asymp-
totic results to low-dose extrapolation has resulted in additional
controversy. Thomas (54) demonstrated in a simulation study that
the estimate of stage at which the carcinogen acted in a multistage

model assuming a constant intensity of exposure over time was
robust with respect to error in the measurement of intensity. Such
an observation is important when attempting to estimate the ef-
fects of removing an exposure from the general population.
These results represent a beginning in regard to investigating
various aspects of robustness, but more work needs to be done.

Unfortunately, in assessing the effect of low exposure to cancer
risk, even with further investigations the ability to support the
validity of our inference is limited by the inability te obtain
estimates of the effect of low exposure from epidemiological
studies. The general shape of the dose-response curve at low
levels must be formulated based on our knowledge of the
mechanisms of the carcinogenic process. Central to the issue of
determining low exposure effects is whether a threshold exists,
i.e., a level of exposure below which there is no increased risk.
Based on the current view of the carcinogenic process, a linear
nonthreshold model appears to be the most widely accepted
method of estimating risk at low exposure (55). The linear non-
threshold model has been described within the context of a
modified multistage model by Crump (56). The assumptions im-
plicit in a model relative to the behavior of the dose-response
curve at low exposure may have a substantial effect on low-dose
risk estimates. However, in the absence of sufficient empirical
observations, model selection at low dose must be made based
on perceived biological mechanisms rather than statistical
considerations.

Model Discrimination

Another statistical issue relates to model discrimination. We
have noted that several models may fit the same database, but the
models may have different underlying biological assumptions.
An integral part of the selection of a model entails using available
biological data to evaluate the assumptions made in the various
models. Recently, Bogen (57) has concluded that available
biological evidence does not support the assumption of exponen-
tial growth of precancerous cells, which is one of the assumptions
of most of the multistage cancer risk models, including the two-
stage model of Moolgavkar and Knudson. Bogen suggests
changes to existing models that he believes may correct for
underestimates of small increments of cancer risk that would
result if exponential growth is assumed (57). This continued
scrutiny of the biological assumptions is desirable and will pro-
bably continue. However, it is likely that all of the statistical
models posed will continue to be considered simplistic when
evaluated by a cell biologist in regard to explaining the com-
plicated process of carcinogenesis.

In conjunction with assessing the underlying biological
assumptions, more work could be done in determining which of
the existing models best fits various data sets. It is likely that if
model discrimination was conducted in a hypothesis testing for-
mat, it might lead to some recognition of the limitations of some
of the models, which might then lead to eventual improvement.
There should be systematic application of competing models to
a large number of epidemiological studies. Ideaily, one might
develop a formal statistical procedure to discriminate competing
models, and then with existing data sets, formally test which
model best fits the data. Simulation studies could be used to sup-
plement such analysis to evaluate the power of discrimination
among the various studies.
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Testing which of two specific models in a general class of
models is most appropriate has been applied to select between
additive and multiplicative modeis (58-59). The classical
likelihood ratio test is a well-accepted approach and has been ap-
plied to situations where the two competing models are special
cases of a more general class of models. However, it is not
generally recognized that likelihood ratio procedures have also
been applied to situations in which the two models being com-
pared are not members of the same family. For example,
Dumonceaux and Antle (60) have provided a test of lognormal
versus the Weibull distribution using likelihood ratio procedures.
Statistical procedures to compare competing models in car-
cinogenic risk assessment would be more complicated, but
development of even an approximate method to formally
discriminate among competing models would be a useful
procedure.

Exposure Data

One of the areas that continues to be a concemn is the accuracy
of exposure data and the most appropriate way (0 summarize it
for purposes of risk assessment. The individual measurements
used for exposure in most risk assessment studies are themselves
an average of values for a group of individuals. Little work has
been done to assess how using such averages in these models
would compare to using each individual’s sample. A firststepin
this regard would be considering dose as a random effect instead
of the fixed effect that is assumed in most carcinogenic models.
Similarly, more investigation is needed to determine the sen-
sitivity of the inferences made from the various models to dif-
ferent methods of characterizing dose (average exposure, max-
imum exposure, cumulative exposure, etc.)

Screening and Early Detection of Risk

One of the objectives of public health is early detection of
health problems. Many of the epidemiologic studies to assess
carcinogenic risk are conducted after large numbers of workers
have already been exposed. Although the requirements of a suf-
ficiently large population to obtain acceptable statistical power
and the existence of a latency period for many diseases make it
more likely that larger numbers of individuals will be exposed
by the time a risk has been detected, there has been little effort
to apply the existing statistical metheds of sequential analysis to
detect risk earlier. Adopting such models would require
modifications to incorporate the concept of disease latency and
appropriate control of type I error if multiple diseases are being
screened. Knowledge of specific factors that relate to risk of
disease may suggest evaluating certain subsets of workers or in-
cluding data on potential confounders so that statistical power
may be increased. If such surveillance designs are developed,
they could be applied to new processes that are believed to have
the potential for an elevated cancer risk.

Summary

Continued work is needed in comparing the biological
Justification of different models, testing models on epidemio-
logical populations, and evaluating model robustness. Little
work has been done to develop better meta analysis for assessing

risk across epidemiological studies, to develop methods to test
the applicability of competing models, to evaluate various
strategies of early identification of toxic substances, or to evaluate
the impact on the estimate of risk of differing ways of measuring
exposure. It needs to be emphasized that the use of models in an
area such as this has to be done cautiously and that any statistical
model will probably be oversimplistic biologically. Nevertheless,
such models help us organize our thinking about carcinogenesis
and suggest new hypotheses to be tested. However, we must avoid
the temptation of overinterpretation of the results obtained when
fitting a model; in this regard we need more rigorous applications
of the models to large numbers of databases, more simulation
studies to determine how sensitive the conclusions are to model

" inadequacy, and more statistical theory to enable comparisons

among the different competing models.

In closing, the area of development of models for carcinogenic
risk assessment should be viewed as many other developing
areas. It is unlikely that the models we are currently using to
describe the mechanisms of cancer will be the ones we would
select 10 years from now. Nevertheless, recognizing these limita-
tions does not imply that we discard all the present approaches.
The following quotation from Nemath would appear particularly
appropriate in the area of risk assessment: “Scientists are like
Sailors trying to rebuild a ship on the open sea. Inthe end, every
plank may be changed, but at any stage there are planks we leave
alone.”

Work related to meta analysis was partially supported by the Motor Vehicles
Manufacturing Association.

REFERENCES

1. Breslow, N. Some statistical models useful in the study of occupational mor-
tality. In: Environmerital Health: Quantitative Methods (A. Whittemore, Ed.),
Proceedings of a Conference sponsored by SIAM Institute of Mathematics
and Society and supported by the National Science Foundation of Alta, UT,
July 5-9, K¥76. pp. 88-103.

2. Pasternack, B, 5., and Shore, R. E. Statistical methods for assessing risk
fotlowing exposure to environmental carcinogens. In: Environmental Health:
Quantitative Methods (A. Whittemore, Ed.), Proceedings of a Conference
sponsored by SIAM Institute of Mathematics and Society and supported by
the National Science Foundation of Alta, UT, July 5-9, 1976. pp. 49-69.

3. Breslow, N. E_, Lubin, J. H., Marek, P., and Langholz, B. Multiplicative
models and cohort analysis. J. Am. Stat. Assoc. 78(381): 1-12 (1983).

4. Gilbert, E. 5. The assessment of risks form occopational exposures to ionizing
radiation. In: Environmental Health: Quantitative Methods (A. Whittemore,
Ed.), Proceedings of a Conference sponsored by SIAM Institute of
Mathematics and Society and supported by the National Science Foundation
at Alta, UT, July 5-9, 1976, pp. 209-225.

5. Breslow, N. E. Analysis of survival data under the proportional hazards
model. Int. Stat. Rev. 43; 45-58 (1978).

6. Axelson, O., Anderson, K., Hogstedt, C., Holmberg, B., Molina, G., and
de Vendier, A. A cohort study on trichloroethylene response and cancer mor-
tality. J. Occup. Med. 20: 194 (1978).

7. Rockette, H. E. Occupational bjostatistics. In: Environmental and Occupa-
tional Medicine (W. N. Rom, A, D. Renzetti, 1. $. Lee, and V. E. Archer,
Eds.), Litde, Brown and Company, Boston, 1981, pp. 35-41.

8. Rockette, H. E., and Arena, V. C, Mortality studies of aluminum reduction
plant workers: potroom and carbon department, J, Occup. Med. 25(7):
549-557 (1983).

9. Rockette, H E., and Arcna, V. C, Evaluation of the proportionate mortali-
ty index in the presence of multiple comparisons. Stat. Med. 6: 71-77 (1987).

10. Marsh, G. M., and Preininger, M. OCMAP: a user-oriented occtipational
cohort mortality analysis program. Am. Stat. 34: 245-246 (1980).



STATISTICAL ISSUES IN CARCINOGENIC RISK ASSESSMENT

- Monson, R. R. Analysis of relative survival and proportional mortality.

Comput. Biomed. Res. 7 325-332 (1974).

12. Light, R. 3., and Pillemer, D. B. Reviewing Research: The Science of Sum-

ming Up. Harvard University Press, Cambridge, MA, 1984.

13. Hunter, 1. E., Schmidt, E L., and Jackson, G. B. Meta-Analysis:

4.

16.

17.

18.

20,

21

22

23.

24,

25,
26.
27,
28
29,

30.

L

32

33,

35

Cumulating
Research Fmdlngsacross Studies, Vol. 4. Sage Publications, Beverly Hills,
CA, 1982.
Glass, G. V., McGaw, B., and Smith, M. L. Meta-Analysis in Social
Research. Sage Publications, Beverly Hiils, CA, 1981.

. Hedges, L. V., and Olkin, 1. Statistical Methodology for Meta-Analysis.

Academic Press, New York, 1984,

Collins, R., and Langman, M. Treatment with histamine-H antagonists in
acute upper gastrointestinal hemorrhage. N. Engl. J. Med. 313: 659-666
(1985).

Collins, R., Yusuf, S., and Peto, R. Overview of randomized trials of
diuretics in pregnancy. Br. Med. J. 290; 17-22 (1986).

Tran, Z. V., and Weltman, A. Differential effects of exercise on serum lipid
and lipoprotein levels seen with changes in body weight: a meta analysis. 1.
Am. Med. Assoc. 254: 919-924 (1985).

. Himel, H. N., Liberati, A. L., Gelber, R. D., and Chalmers, T. C. Adju-

vant chemotherapy for breast cancer: a pooled estimate based on publish-
ed randomized control trials. J. Am. Med. Assoc. 256: 11481159 (1986).

Early Breast Cancer Trialists’ Collaborative Group. Effects of adjuvant
tamoxifen and cytotoxic therapy on mortality in early breast cancer: an over-
view of 61 randomized trials among 28,896 women. N. Engl. J. Med. 319:
1681-1692 (1988).

Dinman, B. D., and Sussman, N. B. Uncertainty, risk, and the role of
cpidemiology in public policy development, J. Occup. Med. 27(7): 511-516
(1983).

Louis, T. A., Fineberg, H. V., and Mosteller, R. Findings for public health
for meta-analysis. Annu. Rev. Public Health 6: 1-20 (1985).

Greenland, S. Quantitative methods in the review of epidemiologic literamre.
Epidemiol. Rev. 9: 1-30 (1987).

Jenick, M. Meta-analysis in medicine: where we are and where we want to
go. 1. Clin. Epidemiol. 42(1): 35-44 (1989).

Beaumont, J. 1., and Breslow, N. E, Power considerations in epidemiologic
studies of vinyl chloride workers. Am. J. Epidemiol. 114: 725-734 (1981).
Steinberg, E. P., and Shepard, D. S. Lead—is it carcinogenic? Public Health
Rev. 11(2): 177-192 (1983).

Frumkin, H., and Berlin, J. Asbestos exposure and gastrointestinal
malignancy review and meta-analysis. Am. J. Ind. Med. 14: 79-95 (1988).
Austin, H., Delzell, E., and Cole, P. Benzene and lenkemia: a review of the
literature and a risk assessment. Am. J. Epidemiol. 127¢3): 419-439 (1988).
Abramson, M. J., Wiodarczyk, J. H., Saunders, N, A., and Hensley, M.
J. Does aluminum smelting cause lung disease? Am. Rev. Respir. Dis. 139:
1042-1057 (1989).

National Research Council. Environmenial Tobacco Smoke: Measuring Ex-
posures and Assessing Health Effects. National Academy Press, Washingion,
DC, 1986,

Rockette, H. E., and Redmond, C. K. Limitations and Advantages of Meta-
Analysis in Clinical Trials. Recent Resulis in Cancer Research, Vol. HI.
Springer-Verlag, Berlin, 1988,

DerSimonian, R., and Laird, N. Meta-analysis in clinical trials. Controll-
ed Clin. Trials 7: 177-188 (1986).

Gelber, R. D., and Goldhirsch, A. The concept of an overview of cancer
clinical trials with special emphasis on early breast cancer. J. Clin. Oncol.
4(11): 1696-1703 (1986).

. Redmong, C. K., and Rockette, H. E. Meta-analysis: considerations of its

worth and its limitations. In: Adjuvant Therapy of Cancer, Vol. 5 (5. E.
Salmon, Ed.), Grune and Siratton, New York, 1987, pp. 467-478.
Schisselman, J. J, Case-Control Studies Design, Conduct, Analysis. Oxford
University Press, New York, 1982.

227

36. Whittemore, A., and Keller, J. B. Quantitative theories of carcinogenesis.
SIAM Rev. 20(1): 1-30 (1978).

37. Armitage, P. Multistage models of carcinogenesis. Environ. Health Perspect.
63: 195-201 (1985).

38. Moolgavkar, S. H., and Knudson, A. G. Mutation and cancer: a model for
human carcinogenesis. J. Natl. Cancer Inst. 66(6): 1037-1051 (1981).

39 Moolgavkar, S. H., Day, N. E. and Stevens, R. G. Two-stage model for car-
cinogenesis: epidemiology of breast cancer in females. J. Natl. Cancer Inst.
65(3): 559-569 (1980).

40. Moolgavkar, 5. H., Dewanji, A., and Venzon, D.J. A stochastic two-stage
model for cancer risk assessment. I. The hazard function and the probability
of tumor. Risk Anal. 8(3): 383-392 (1988).

41. Chu, K. C. Biomathematical models for cancer: a nonmathematical view of
mathematical models for cancer. J. Chron. Dis. 40(Suppl. 2): 1635-1705
(1987).

42_ Stocks, P. A study for the age for cancer of the stomach in connection with
atheory of the cancer producing mechanism. Br. J. Cancer 7, 407-47 (1953).

43. Nordling, C. O. A new theory in the cancer-inducing mechanism. Br. J.
Cancer 7: 68-72 (1953).

44_ Armitage, P., and Doll, R. The age distribution of cancer and a multistage
theory of carcinogenesis. Br. J. Cancer 8: 1-12 (1954).

45, Whittemore, A. Quantitative theories of carcinogenesis. Adv. Cancer Res.
27: 55-58 (1978).

46. Pike, M. C. A method of analysis of a certain class of experiments in car-
cinogenesis. Biometrics 22: 142-161 (1966).

47 Pew, R.,Roe, F . C., Lee, P. N., Levy, L., and Clack, J. Cancer and ag-
ing in mice and men. Br. J. Cancer 32: 411-426 (1975).

48. Pike, M. C. Age-related factors in cancers of the breast, ovary and en-
dometrium, J. Chron. Dis. 40(suppl. 2): 59-69 (1587).

49. Day, N. E., and Brown, C. C. Multistage models and primary prevention of
cancer. J, Natl. Cancer Inst, 64{4): 977-989 (1980).

50. Crump, K. §., and Howe, R. B. The multistage model witha ti
dose pattern: applications to carcinogenic risk assessment. Risk Anal. 4(3):
163-176 (1984).

51. Patwardhan, R. N. Inferential Procedures for Multistage Models for Car-
cinogenic Risk Assessment with Applications. Ph.D. Dissertation, University
of Pittsburgh, Pittsburgh, PA, 1989,

52. Krewski, D., Murdoch, D., and De Wanji, A. Statistical modeling and ex-
trapolation of carcinogenesis data, In: Modern Statistical Methods in Chronic
Disease Epidemiology (S. H. Moolgavkar and R. L. Prentice, Eds.), John
Wiley and Sons, New York, 1985, pp. 259-282.

53. Crump, K. 8., and Howe, R. B. A review of methods for calculating statistical
confidence limits in low dose extrapolation. In: Toxicological Risk Assess-
ment, Vol. 1: Biologicat and Statistical Criteria (D. B. Clayson, D. Krewski,
and 1. Munro, Eds.), CRC Press, Boca Raton, FL, 1985, pp. 187-203.

54. Thomas, D. C. Use of computer sirulation to explore analytical issues in
nested case-control studies of cancer involving extended exposures: methods
and preliminary findings. J. Chron. Dis. 40(suppl 2): 201-208 (1987).

55. Anderson, E. L. Quantitative approaches in use to assess cancer risk. Risk
Anal. 3(4): 277-295 (1983).

56. Crump, K. S. An improved procedure for low dose carcinogenic risk assess-
ment from animal data. J. Environ. Pathol. Toxicol. 5: 675-684 (1980).

57. Bogen, K. T. Cell proliferation kinetics and multistage cancer risk modeis.
J. Natl. Cancer Inst. 81(4): 267-277 (1989).

58, Thomas, D. C. General relative risk models for survival time and matched
case-control analysis. Biometrics 37: 673686 (1981).

59. Moolgavkar, S. H., and Venzon, D. ). General relative risk regression models
for epidemiologic studies. Am. J. Epidemiol. 126(5): 949-961 (1987).

60. Dumonceaux, R., and Antle, C. E. Discrimination between the lognormal
and the Weibull distributions. Technometrics 15: 923-926 (1973).



